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This talk is about optimizing 
small pickup and delivery 
routes very quickly.



Motivation
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Original motivation came from routing at Zoomer. 
Work continued at Grubhub Delivery after they 
picked up our Decision Engineering team.

Both solve dynamic meal delivery problems. The 
biggest differences in operational context are scale, 
and that Zoomer did not have a marketplace.

Problem Origin: Meal Delivery in Industry
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Dynamic Meal Delivery

● Orders arrive dynamically 
throughout operational period.

● Shared pool of drivers serves many 
restaurants.

● Multiple orders can be consolidated 
on drivers for efficiency.

● Problems get large (e.g. thousands 
of orders, hundreds of drivers). 🚙
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Assignment & Routing Process
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Load current 
and pending  
assignments

Route driver

50 ms

Assign “best” 
driver to each 
unassigned 
order

Plan improvements

30 s

Swap order assignments

Route driver

50 ms

Periodic replanning. Assignment uses improvement heuristic. Route solver
heuristically finds “good” routes given a driver and set of orders.
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Assignment & Routing Process

● Quality of assignments and routes are interdependent.

● Normal planning periods are every 30 seconds to 2 minutes.

● Planners time out. If an algorithm exceeds its limit, it isn’t done 
improving yet. But it still has to provide a plan.

● Every millisecond matters. Saving time solving one problem 
means we can spend that time solving another.
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Effect of Supply-Demand Imbalance

● Some service degradation is 
unavoidable. Too many 
orders, not enough drivers.

● Some is algorithmic. Longer 
routes are harder to optimize!

● This can happen when solving 
8-order routes in high volume.
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Options for Handling Undersupply

● Wait and See: Demand is stochastic. Maybe it’ll pass?

● Add Drivers: Even if possible, increases financial liability.

● Underserve Orders: Affects LTV. Probably violates SLAs.

● Manage Supply with ETAs: Requires control of order intake.

● Cancel Orders or Blackout Restaurants: Worst case scenario.

More robust service through better routing is less disruptive.
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Our Mission: Faster Single-Vehicle Route Solving

● Orders were assigned as late as possible to maximize options. 

● Orders were continually planned for to set expectations with 
restaurants and dispatchers.

● During periods of supply-demand imbalance, most of the 
planning time was spent constructing single-vehicle pickup and 
delivery routes.
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Our Approach: Use Exact Methods
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Our Approach: Use Exact Methods

● Solvers (e.g. Gecode) allow us to separate model structure from 
search algorithm. That’s good software design!

● Single-vehicle routes are small. If a solver can prove optimality 
quickly, that saves time.

● We want techniques that find good (e.g. within 10% of optimal) 
solutions very quickly and are capable of proving optimality.



Single-Vehicle
Pickup & Delivery Problems



The TSP with Pickup & Delivery (TSPPD)
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Notation: 

(+i,-i) are a pickup and delivery pair

+i = pickup i
-i = delivery i

(+0,-0) are the start and end locations



The TSPPD
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Objective: 

Find a minimum-cost Hamiltonian tour in which 
+i precedes -i for all pickup & delivery pairs (+i,-i). 

(+0 +i +j -i +k -j -k -0)     (+0 +i +j -i -k -j +k -0)
 Feasible TSPPD tour    Infeasible TSPPD tour



TSPPD graph structure
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+0 -0

+i -i

+j -j

+k -k



TSPPD Graph Structure: Precedence Violation
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+0 -0

+i -i

+j -j

+k -k
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Grubhub TSPPD Test Set

● Meal delivery problems have unique characteristics, so we built 
a test set from real delivery data and expected travel times.

● Restaurants often appear in clusters. Most orders originate from 
a subset of them.

● There are many more diners than restaurants. Diners are often 
dispersed in residential areas.



19

Grubhub Test Set: TSPPD Problems

People, Meals, Perishable Goods Groceries, Packages, Non-Perishable Goods
n

Courier

Pickup

Delivery



Grubhub Test Set: TSPPD Solutions

People, Meals, Perishable Goods Groceries, Packages, Non-Perishable Goods
n

Courier

Pickup

Delivery
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Models & Results
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Enumeration, CP, and MIP Models

● In a previous study, we tested a number of models (enumerative, 
MIP, CP, hybrid) for time to prove optimality, find a solution within 
10% of optimal, and other measures.

● The best of these for finding good solutions quickly (and warm 
starting MIP) was a circuit-based CP model with an Assignment 
Problem inference dual.



CP Model: next Vector 
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● If next[i] = j then 
proceed directly from i to j

● Each element of next has a 
feasible domain of nodes

● Assignment of next[i] is 
implied if dom(next[i]) is 
a singleton

Variable Initial Domain

next[+0] +i +j +k

next[+i] +j +k -i -j -k

next[-i] +j +k -j -k -0

next[+j] +i +k -i -j -k

next[-j] +i -i +k -k -0

next[+k] +i +j -i -j -k

next[-k] +i +j -i -j -0

next[-0] +0



CP Model: Branching Rules 
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Partial Tours: {}
Cost: 0

{(+i +j)}
c+i,+j

{(+i +j), (-j -i)}
c+i,+j + c-j,-i

Nodes: {+0,-0,+i,-i,+j,-j}

next[+i] = +j

next[-j] = -i

next[+i] ≠ +j

next[-j] ≠ -i



Branching on variable assignment:

next[i] = j  ∨  next[i] ≠ j

● Sequential Closest Neighbor (SCN): (i j) is the least-cost feasible 
arc starting at +0 and building a single, connected tour.

● Regret: i is the max-regret node, (i j) is the least cost feasible arc 
from i.

regret(i) = second smallest arc cost from i 
          - smallest arc cost from i

CP Model: Branching Rules
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CP Model: circuit Constraint 
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The circuit constraint in 
Gecode ensures that:

● No two next variables 
have the same value

● There are no subtours 
(i.e. cycles)

● Tour cost propagates 
into a variable (z)

Variable Domain

next[+0] +i +j

next[+i] +j -i -j

next[-i] +j -j -0

next[+j] +i -i -j

next[-j] +i -i -0

next[-0] +0

Variable Domain

next[+0] +j

next[+i] +j -i

next[-i] -0

next[+j] -i -j

next[-j] +i

next[-0] +0

next[-j] = +i



CP Model: circuit Precedence
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● We maintain predecessor and successor sets:

pred[-i] = {+i}, succ[+i] = {-i}

● These sets must be disjoint:

pred[i] ∩ succ[i] = ∅ 

● Branching propagates to pred and succ:

next[i] = j → pred[j] ⊃ pred[i] 
               ∧ succ[i] ⊃ succ[j]

Plus additional inferences rules.
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Decision Diagram Approach

● Use Restricted DDs to generate primal solutions and bounds.

● Vary the diagram width: {0, 5, 10, 15, 20}.

● Use the Assignment Problem solver for dual bounds and 
reduced cost-based variable domain filtering.

● Integrate the DD primal and AP dual into a branch-and-bound.
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Decision Diagram TSPPD Model

min  𝝨i=0,...,2n c(πi,πi+1)

s.t. πi = +0

     πi+1 ∈ Di,  i = 0,...,2n-2

     D0 = V+

     Di+1 = Di ∪ {-πi} \ {πi} if πi ∈ V+

     Di+1 = Di \ {πi} if πi ∈ V-

     D2n = {-0}

Route cost

Start at +0

Domain for next nodes

Go from +0 to a pickup

Pickups precede deliveries

End at -0
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Exact and Restricted Diagrams for TSPPD

Diagrams are constructed 
layer by layer in a 
top-down manner. 

Exact diagrams 
fully explore the state 
space, which can grow 
very large.

Restricted diagrams act as a 
primal heuristic by dropping 
the worst states at each layer.

L1

L2

L3

L7

L4

L5

L6
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Assignment Problem Inference Dual

● Maintain an Assignment Problem (AP) 
inference dual throughout the search tree to 
provide dual bounds.

● As nodes are appended to the tour, they are 
fixed in the AP inference dual.

● Primal-dual algorithm also yields reduced 
costs for feasible arcs. If a reduced cost for an 
arc plus the cost of the partial tour exceeds 
the incumbent cost, that arc is eliminated.

● First solution of AP executes in O(n3) time. 
Subsequent iterations are O(n2) time.

Assignment Problem

min Σi,j cijxij

s.t. Σj xij = 1 ∀  i 

Σi xij = 1 ∀  j 

xij ϵ {0,1} ∀  i,j



Hybrid CP vs Hybrid DD for Finding Good Solutions

32MDD model is more effective than CP model at finding high quality solutions quickly. 



Conclusions
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Key Differences: CP & DD Models

● DD state is extremely compact. It consists of the current node, a 
pointer to the parent state, and a single domain vector (instead 
of n variables domains).

● DD model lacks finite domain propagation.

● CP branch-and-bound in Gecode uses depth-first search. 
Top-down DD construction approximates a breadth-first search.
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● There are no commercial-grade DD solvers (yet).

● Incorporating relaxation and inference duals is challenging.

● DDs can find good solutions to very complex problems quickly.

● With work, they can prove optimality faster than MIP on some 
problems (e.g. certain set covers, MISPs).

● State formulations allow composable and testable models.

Using DDs: Considerations



36

Contributions

● Show applicability of Decision Diagrams to real-time routing 
problems in meal delivery.

● Hybridize DD model with Assignment Problem inference dual. 
Comparison with baseline CP model.

● Realistic benchmark set of TSPPD instances for meal delivery.
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Future Work

● Extend TSPPD model to multi-vehicle routing and assignment.

● Incorporate and test additional relaxation and inference duals.

● Add side constraints common to meal delivery, such as ready-by 
times and driver capacity.
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