
Decision Diagrams for Real-Time Routing

Ryan J. O’Neil, nextmv.io
Karla Hoffman, George Mason University

INFORMS Annual Meeting
October 22, 2019

1

This talk is about optimizing
small pickup and delivery
routes very quickly.

Motivation

4

Original motivation came from routing at Zoomer.
Work continued at Grubhub Delivery after they
picked up our Decision Engineering team.

Both solve dynamic meal delivery problems. The
biggest differences in operational context are scale,
and that Zoomer did not have a marketplace.

Problem Origin: Meal Delivery in Industry

5

Dynamic Meal Delivery

● Orders arrive dynamically
throughout operational period.

● Shared pool of drivers serves many
restaurants.

● Multiple orders can be consolidated
on drivers for efficiency.

● Problems get large (e.g. thousands
of orders, hundreds of drivers). 🚙

🚙

🌯
🍕

🍽
🍽

🍽

6

Assignment & Routing Process
A

ss
ig

ne
r

R
ou

te
 S

ol
ve

r

Load current
and pending
assignments

Route driver

50 ms

Assign “best”
driver to each
unassigned
order

Plan improvements

30 s

Swap order assignments

Route driver

50 ms

Periodic replanning. Assignment uses improvement heuristic. Route solver
heuristically finds “good” routes given a driver and set of orders.

7

Assignment & Routing Process

● Quality of assignments and routes are interdependent.

● Normal planning periods are every 30 seconds to 2 minutes.

● Planners time out. If an algorithm exceeds its limit, it isn’t done
improving yet. But it still has to provide a plan.

● Every millisecond matters. Saving time solving one problem
means we can spend that time solving another.

8

Effect of Supply-Demand Imbalance

● Some service degradation is
unavoidable. Too many
orders, not enough drivers.

● Some is algorithmic. Longer
routes are harder to optimize!

● This can happen when solving
8-order routes in high volume.

9

Options for Handling Undersupply

● Wait and See: Demand is stochastic. Maybe it’ll pass?

● Add Drivers: Even if possible, increases financial liability.

● Underserve Orders: Affects LTV. Probably violates SLAs.

● Manage Supply with ETAs: Requires control of order intake.

● Cancel Orders or Blackout Restaurants: Worst case scenario.

More robust service through better routing is less disruptive.

10

Our Mission: Faster Single-Vehicle Route Solving

● Orders were assigned as late as possible to maximize options.

● Orders were continually planned for to set expectations with
restaurants and dispatchers.

● During periods of supply-demand imbalance, most of the
planning time was spent constructing single-vehicle pickup and
delivery routes.

11

Our Approach: Use Exact Methods

12

Our Approach: Use Exact Methods

● Solvers (e.g. Gecode) allow us to separate model structure from
search algorithm. That’s good software design!

● Single-vehicle routes are small. If a solver can prove optimality
quickly, that saves time.

● We want techniques that find good (e.g. within 10% of optimal)
solutions very quickly and are capable of proving optimality.

Single-Vehicle
Pickup & Delivery Problems

The TSP with Pickup & Delivery (TSPPD)

14

Notation:

(+i,-i) are a pickup and delivery pair

+i = pickup i
-i = delivery i

(+0,-0) are the start and end locations

The TSPPD

15

Objective:

Find a minimum-cost Hamiltonian tour in which
+i precedes -i for all pickup & delivery pairs (+i,-i).

(+0 +i +j -i +k -j -k -0) (+0 +i +j -i -k -j +k -0)
 Feasible TSPPD tour Infeasible TSPPD tour

TSPPD graph structure

16

+0 -0

+i -i

+j -j

+k -k

TSPPD Graph Structure: Precedence Violation

17

+0 -0

+i -i

+j -j

+k -k

18

Grubhub TSPPD Test Set

● Meal delivery problems have unique characteristics, so we built
a test set from real delivery data and expected travel times.

● Restaurants often appear in clusters. Most orders originate from
a subset of them.

● There are many more diners than restaurants. Diners are often
dispersed in residential areas.

19

Grubhub Test Set: TSPPD Problems

People, Meals, Perishable Goods Groceries, Packages, Non-Perishable Goods
n

Courier

Pickup

Delivery

Grubhub Test Set: TSPPD Solutions

People, Meals, Perishable Goods Groceries, Packages, Non-Perishable Goods
n

Courier

Pickup

Delivery

20

Models & Results

22

Enumeration, CP, and MIP Models

● In a previous study, we tested a number of models (enumerative,
MIP, CP, hybrid) for time to prove optimality, find a solution within
10% of optimal, and other measures.

● The best of these for finding good solutions quickly (and warm
starting MIP) was a circuit-based CP model with an Assignment
Problem inference dual.

CP Model: next Vector

23

● If next[i] = j then
proceed directly from i to j

● Each element of next has a
feasible domain of nodes

● Assignment of next[i] is
implied if dom(next[i]) is
a singleton

Variable Initial Domain

next[+0] +i +j +k

next[+i] +j +k -i -j -k

next[-i] +j +k -j -k -0

next[+j] +i +k -i -j -k

next[-j] +i -i +k -k -0

next[+k] +i +j -i -j -k

next[-k] +i +j -i -j -0

next[-0] +0

CP Model: Branching Rules

24

Partial Tours: {}
Cost: 0

{(+i +j)}
c+i,+j

{(+i +j), (-j -i)}
c+i,+j + c-j,-i

Nodes: {+0,-0,+i,-i,+j,-j}

next[+i] = +j

next[-j] = -i

next[+i] ≠ +j

next[-j] ≠ -i

Branching on variable assignment:

next[i] = j ∨ next[i] ≠ j

● Sequential Closest Neighbor (SCN): (i j) is the least-cost feasible
arc starting at +0 and building a single, connected tour.

● Regret: i is the max-regret node, (i j) is the least cost feasible arc
from i.

regret(i) = second smallest arc cost from i
 - smallest arc cost from i

CP Model: Branching Rules

25

CP Model: circuit Constraint

26

The circuit constraint in
Gecode ensures that:

● No two next variables
have the same value

● There are no subtours
(i.e. cycles)

● Tour cost propagates
into a variable (z)

Variable Domain

next[+0] +i +j

next[+i] +j -i -j

next[-i] +j -j -0

next[+j] +i -i -j

next[-j] +i -i -0

next[-0] +0

Variable Domain

next[+0] +j

next[+i] +j -i

next[-i] -0

next[+j] -i -j

next[-j] +i

next[-0] +0

next[-j] = +i

CP Model: circuit Precedence

27

● We maintain predecessor and successor sets:

pred[-i] = {+i}, succ[+i] = {-i}

● These sets must be disjoint:

pred[i] ∩ succ[i] = ∅

● Branching propagates to pred and succ:

next[i] = j → pred[j] ⊃ pred[i]
 ∧ succ[i] ⊃ succ[j]

Plus additional inferences rules.

28

Decision Diagram Approach

● Use Restricted DDs to generate primal solutions and bounds.

● Vary the diagram width: {0, 5, 10, 15, 20}.

● Use the Assignment Problem solver for dual bounds and
reduced cost-based variable domain filtering.

● Integrate the DD primal and AP dual into a branch-and-bound.

29

Decision Diagram TSPPD Model

min 𝝨i=0,...,2n c(πi,πi+1)

s.t. πi = +0

 πi+1 ∈ Di, i = 0,...,2n-2

 D0 = V+

 Di+1 = Di ∪ {-πi} \ {πi} if πi ∈ V+

 Di+1 = Di \ {πi} if πi ∈ V-

 D2n = {-0}

Route cost

Start at +0

Domain for next nodes

Go from +0 to a pickup

Pickups precede deliveries

End at -0

30

Exact and Restricted Diagrams for TSPPD

Diagrams are constructed
layer by layer in a
top-down manner.

Exact diagrams
fully explore the state
space, which can grow
very large.

Restricted diagrams act as a
primal heuristic by dropping
the worst states at each layer.

L1

L2

L3

L7

L4

L5

L6

31

Assignment Problem Inference Dual

● Maintain an Assignment Problem (AP)
inference dual throughout the search tree to
provide dual bounds.

● As nodes are appended to the tour, they are
fixed in the AP inference dual.

● Primal-dual algorithm also yields reduced
costs for feasible arcs. If a reduced cost for an
arc plus the cost of the partial tour exceeds
the incumbent cost, that arc is eliminated.

● First solution of AP executes in O(n3) time.
Subsequent iterations are O(n2) time.

Assignment Problem

min Σi,j cijxij

s.t. Σj xij = 1 ∀ i

Σi xij = 1 ∀ j

xij ϵ {0,1} ∀ i,j

Hybrid CP vs Hybrid DD for Finding Good Solutions

32MDD model is more effective than CP model at finding high quality solutions quickly.

Conclusions

34

Key Differences: CP & DD Models

● DD state is extremely compact. It consists of the current node, a
pointer to the parent state, and a single domain vector (instead
of n variables domains).

● DD model lacks finite domain propagation.

● CP branch-and-bound in Gecode uses depth-first search.
Top-down DD construction approximates a breadth-first search.

35

● There are no commercial-grade DD solvers (yet).

● Incorporating relaxation and inference duals is challenging.

● DDs can find good solutions to very complex problems quickly.

● With work, they can prove optimality faster than MIP on some
problems (e.g. certain set covers, MISPs).

● State formulations allow composable and testable models.

Using DDs: Considerations

36

Contributions

● Show applicability of Decision Diagrams to real-time routing
problems in meal delivery.

● Hybridize DD model with Assignment Problem inference dual.
Comparison with baseline CP model.

● Realistic benchmark set of TSPPD instances for meal delivery.

37

Future Work

● Extend TSPPD model to multi-vehicle routing and assignment.

● Incorporate and test additional relaxation and inference duals.

● Add side constraints common to meal delivery, such as ready-by
times and driver capacity.

38

References

● This work:
Decision Diagrams for Solving Traveling Salesman Problems with Pickup and
Delivery in Real Time (Operations Research Letters, 2019)

● Test instances and source code:
https://github.com/grubhub/tsppdlib
https://github.com/ryanjoneil/tsppd-dd

● CP model:
Exact Methods for Solving Traveling Salesman Problems with Pickup and
Delivery in Real Time (Optimization Online)

https://github.com/grubhub/tsppdlib
https://github.com/ryanjoneil/tsppd-dd

Other References

39

● A. A. Cire and W.-J. van Hoeve. Multivalued Decision Diagrams for Sequencing
Problems. Operations Research, 61(6):1411–1428, 2013.

● F. Focacci, A. Lodi, and M. Milano. A Hybrid Exact Algorithm for the TSPTW.
INFORMS Journal on Computing, 14(4):403–417, 2002.

● K. Ruland and E. Rodin. The Pickup and Delivery Problem: Faces and
Branch-and- Cut Algorithm. Computers & Mathematics with Applications,
33(12):1–13, 1997.

40

?

